
A Parallel Implementation of the Everglades

Landscape Fire Model in Networks of

Workstations ?

Fusen He and Jie Wu

Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
{fhe, jie}@cse.fau.edu

Abstract. This paper presents a low-communication overhead and high-
performance data parallelism implementation of the Everglades Land-
scape Fire Model (ELFM) in a network of workstations (NOWs). Check-
pointing and rollback techniques were used to handle the spread of fire
which is a dynamic and irregular component of the model. A synchro-
nous checkpointing mechanism was used in the parallel ELFM code using
Message Passing Interface (MPI). The speedup and performance of the
parallel program were also studied. Results show that the performance
of ELFM using MPI is significantly enhanced by using the checkpointing
and rollback mechanisms.

1 Introduction

With the advance of the network technology, network computing has en-
tered into the main stream of solving scientific problems. Network computing
is a process whereby a set of workstations connected by a network work collec-
tively to solve a single large problem. As more and more organizations have al-
ready had high-speed networks/switches interconnecting many general-purpose
workstations, the combined computational resources may exceed the power of
a single high-performance computer. This trend has gained sufficient popular-
ity to establish a new parallel processing paradigm: network of workstations
(NOWs) [1].
A NOWs can be organized as a “cooperative cluster” to perform paral-

lel/distributed computation for a single application. Each individual worksta-
tion can be assigned a part of a given problem and these parts can be computed
concurrently between synchronization points. When the computation reaches
these points, the participating workstations pause in their computation stage
and enter a communication stage. During the communication stage, these work-
stations exchange messages containing the intermediate results needed in the

? This work was supported in part by a grant from South Florida Water Management
District (SFWMD).

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 1–15, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



2 Fusen He and Jie Wu

next computation stage. A local area network (LAN) is a widely used network
structure in a NOWs. Since LAN technology was not initially developed for
parallel processing, communication overheads among workstations are still quite
high [1]. This has placed severe constraints on obtaining high performance in
a NOWs. The unacceptable performance of the parallel implementation of the
Everglades Landscape Fire Model (ELFM) using the network programming en-
vironment Express is such an example [3].

The Everglades landscape is a vast freshwater marsh in South Florida and is
one of the largest subtropical wetlands in the world. The Everglades has changed
dramatically during this century with vast areas being converted to urban and
farming land use. These changes may significantly affect efforts to restore nat-
ural vegetation and hydroperiods in the remaining Everglades. Fire has been an
important ecological process in the Everglades and a primary factor shaping the
Everglades vegetation patterns. We cannot fully understand the Everglades with-
out understanding the function of fire. Unfortunately, fire is a difficult process to
experimentally manipulate, especially at a landscape level. This is because that
the spread of fire is dynamic and probabilistic in nature. Recently, an Everglades
Landscape Fire Model (ELFM) [8] was developed to understand fire behavior in
Water Conservation Area 2A (WCA 2A) in the Everglades.

Computer simulation can be applied to evaluate impacts and understand
ecosystem dynamics. In order to speedup the simulation process, ELFM has
been parallelized using Express [3] in several platforms such as UNIX worksta-
tions, CM-5 supercomputers, and Macintosh transputers. The parallel ELFM
code has also been ported from Express to Message Passing Interface (MPI) [4].
The study in [2] showed that the major reason for the poor performance of the
parallel ELFM code is the heavy interprocessor communication overhead. It is
also shown that the process synchronization consumes a huge portion of CPU
time. In parallel ELFM simulation, when a fire occurs in landscape, it spreads.
If a fire occurs near a boundary area of a subdomain simulated by a processor, it
will spread to an adjacent subdomain that is simulated by a different processor.
In this situation, data exchange is needed to simulate the process of fire spread-
ing that acrosses the boundary of one subdomain to another subdomain. It is
required that this data exchange be performed at the same simulation time step
through process synchronization.

According to the fire behavior in landscape, the probability of fire occurrence
is relatively small. Even when a fire occurs in a subdomain which is simulated
by a processor, it may not be necessary to synchronize all the processors unless
the fire spreads to other subdomains simulated by other processors. The main
purpose of this study is to provide an efficient mechanism to support this type
of parallel applications. Specifically, we try to enhance the performance of the
parallel ELFM code, with MPI as its parallel programming environment, by
using the checkpointing and rollback techniques. The traditional checkpointing
and rollback are normally used to address fault tolerance issues [5]; however, we
use them solely for the performance enhancement purpose in this study. The
interval between two adjacent checkpoints (also called checkpoint interval) is



A Parallel Implementation of the Everglades Landscape Fire Model 3

adjustable. The heavy interprocessor communication can be reduced by a proper
selection of the frequency of process synchronization among processors.

This paper is organized as follows: Section 2 discusses the current status of
ELFM. Section 3 overviews several checkpointing and rollback techniques in a
NOWs. An approach aiming to reduce the heavy interprocessor communication
and synchronization overhead is discussed in Section 4. Section 5 presents the
results of this study and shows the improved performance of the parallel ELFM
code using MPI. Section 6 concludes this paper.

2 Everglades Landscape Fire Model (ELFM)

The ELFM code was used to simulate fire in the Water Conservation Area
2A (WCA 2A) in the northern Everglades. The WCA 2A landscape, with an
area of 43,281 ha, is a mosaic of sawgrass marshes, sloughs, shrub and tree
islands, and invasive cattail communities. The ELFM code simulates fire on
a large spatial scale with a fine resolution of 20m × 20m which, in terms of
grid cell, comes to 1755 × 1634. ELFM is a spatial model with mostly nearest
neighbor interactions except fire spotting in which a fire jumps from one area to
another. Fire spreading is a special case in which a fire jumps (spreads) to its
adjacent areas only. We assume that each cell in the landscape is homogeneous,
i.e., the same computation and communication structure is used. The ELFM
code is portable with its ability to compile and run on UNIX workstations, CM-
5 supercomputers, and Macintosh Transputers without any significant changes
in code.

In the current ELFM code, the simulation time step of fire spreading and
spotting is measured in minutes and the fuel level (a static component in the fire
model) is updated every hour. Process synchronization is performed on a daily
base. Therefore, the simulation on fire spreading and spotting is computational
intensive.

The early version of the parallel implementation of the ELFM code uses a
pessimistic approach. Process synchronization through interprocessor commu-
nication is performed at each simulation step (either in minutes or in hours)
even when there is no fire in the landscape. Since interprocessor communication
overhead is still quite high in a NOWs, this pessimistic approach results in a
poor performance of the parallel ELFM code [2]. By analyzing the ELFM code,
we have found that the occurrence of fire spreading and spotting is rare. Even
a fire occurs and spreads in the landscape, it usually affects a small portion
of the landscape rather than the entire one. If a fire does not spread to an-
other subdomain simulated by another processor, there is no need to exchange
data among processors. We can use checkpointing (saving a set of local states)
combined with rollback (processes rolling back to their checkpoints) to enhance
the performance. In this approach, data exchange is treated as message passing
among processors in a NOWs. No message passing among processors is needed
in regular simulation steps. Checkpointing is made at a regular interval. Roll-



4 Fusen He and Jie Wu

back is needed only when a fire spreads to its neighboring subdomains to keep
simulation data consistent.

3 Checkpointing and Rollback

For parallel processing in a NOWs, a global state is defined as a collection of
local states, one from each workstation in the NOWs. In the ELFM, the state is
a set of numerical data which determines the evolution of the ecosystem in the
Everglades. The checkpointing method [6], [7] is usually used to save the global
state. During the normal execution, each processor periodically checkpoints its
state by storing its execution state into a stable storage such as a hard disk.
Checkpointing is normally used to achieve fault tolerance. In such an applica-
tion, system states are stored regularly as checkpoints. When a failure causes an
inconsistent state, it can rollback to a previous consistent state by simply restor-
ing a prior checkpointing state. This rollback process is also known as rollback
recovery.
A strongly consistent set of checkpoints consists of a set of local checkpoints

such that no information flow takes place between any pair of processors during
the interval spanned by the checkpoints. Checkpointing can be either synchro-
nous, asynchronous, or a combination of both. Another choice is whether or not
to log messages that a processor sends or receives. For parallel applications such
as the ELFM, synchronous checkpointing is the best choice since message ex-
change must be performed at the same physical process evolution time. Clearly,
checkpoints produced by synchronous checkpointing form a strongly consistent
set.
During the simulation, when a global state becomes inconsistent, as in the

case when a fire acrosses boundary of a subdomain, all the processors need to
restore a previous state which is stored in the latest checkpoint. This process is
referred to as rollback.
In the parallel ELFM code, we use checkpointing combined with rollback to

enhance the performance of the program. To simplify our discussion, we consider
an example of a NOWs consists of four workstations and the problem domain
of the ELFM is partitioned into four subdomains with each subdomain assigned
to a distinct workstation. It can be easily extended to a generalized case with
n workstations in a NOWs. We refer to each workstation as a processor. Fig-
ure 1 shows a typical rollback process. The horizontal parallel lines represent the
simulation time space (rather than the physical time space) in each processor.
The vertical dashed lines represent synchronous checkpoints. d is the checkpoint
interval, which is a constant in our simulation. The black dot on each horizontal
line represents the simulation time step of the corresponding subdomain at the
current physical time. Since each processor may have different workloads and
different processing speed, if there is no process synchronization, the actual sim-
ulation time step at different processors may also be different. This means that
processors run asynchronously. The × sign in Figure 1 means that a fire occurs in
processor P2 and it is going to spread across the boundary of the subdomain (re-



A Parallel Implementation of the Everglades Landscape Fire Model 5

rollback

checkpoint 1 checkpoint 2 checkpoint 3

fire

d d

P
0

P1

P2

P
3

Time

Fig. 1. Rollback process in a 4-workstation NOWs.

ferred to as message exchange). All the processors rollback to their most recent
checkpoints. After that, processors resume simulation from that checkpoint but
still in the asynchronous mode. When reaching the time that message exchange
is needed (the start of fire spreading and spotting simulation), all processors
are synchronized and then perform message exchanges. This point is known as
the synchronization point. Since a checkpoint is also a synchronization point,
if a processor reaches a checkpoint while other processors are still behind this
checkpoint, this processor is blocked for other processors to catch up. There
exist several optimization methods, like lazy rollback (i.e. rolling back just the
subdomains involved). However, they would not improve speedup in our case,
since it is based on the completion time of the last processor that finishes its
simulation.

The shaded area in Figure 2 represents the period that the processors sim-
ulate fire spreading and spotting concurrently in the synchronous mode. After
the completion of simulation on fire spreading and spotting, all the processors
switch back to the asynchronous mode. The completion point of synchronous
computation is logged as an new checkpoint. A checkpoint based on the check-
point interval d is referred to as a regular checkpoint. Checkpoints 1, 2, and 4 in
Figure 2 are regular checkpoints. A checkpoint immediately after the completion
of synchronous computation is referred to as a dynamic checkpoint. Checkpoint
3 in Figure 2 is such an example.

Figure 3 shows the difference between regular and dynamic checkpoints.
When multiple message exchanges are needed (because of multiple fires) in a
regular checkpoint interval, all the processors rollback to their most recent dy-



6 Fusen He and Jie Wu

fire

d d

P
0

P1

P
2

P
3

synchronization line

Time

checkpoint 1 checkpoint 2 checkpoint 3 checkpoint 4

Fig. 2. Synchronize processors before message exchange.

namic checkpoints, restore their consistent states there, and resume simulation
similar to those shown in Figures 1 and 2. If processors rollback to their most
recent regular checkpoints, all the processors will enter into an infinite loop be-
tween the regular checkpoint 1 and the point of the current fire in Figure 3. By
applying dynamic checkpointing, we avoid such infinite loops. Clearly, if there is
no fire spreading and spotting during the simulation, only regular checkpoints
are used. In the next section, we propose an algorithm based on the checkpoint-
ing and rollback mechanisms and show its application in parallelizing the ELFM
code using MPI.

4 The Proposed Approach

This section introduces a low-communication overhead model based on check-
pointing and rollback mechanisms. We start with a mathematical model for the
estimation of simulation time, discuss several relevant collective communication
functions provided by MPI, and use checkpointing and rollback to parallelize the
ELFM code.

4.1 Mathematical model

The goal of developing a parallel version of a model is to allow a simulation
to run in much less time than an equivalent serial version with the same nu-
merical accuracy. By distributing workload over several processors, the amount



A Parallel Implementation of the Everglades Landscape Fire Model 7

rollback

current fire

checkpoint checkpoint
regular dynamic

previous fire

old regular
checkpoint

new regular 
checkpoint

d

d

2 21

Time
P
0

P1

P2

P
3

Fig. 3. Rollback with multiple message exchanges between a checkpoint interval.

of time taken to perform computation on an individual processor should be re-
duced. However, additional interprocessor communication and synchronization
overheads make the program spend more time on simulation. Whether a parallel
algorithm is successful or not depends on a balance between these two factors.

For parallel simulation in a NOWs, each workstation is assigned part of the
workload and works independently. We can name this kind of computation as
asynchronous computation. However, when a neighbor interaction (such as fire
spreading and spotting) occurs near the boundary of the subdomain simulated
by a workstation, data exchange between workstations must be performed in
order to make the result consistent. The corresponding workstations exchange
data using the message passing mechanism, and data exchanges always occur
at the same simulation time. Therefore, process synchronization is needed. This
type of computation can be viewed as synchronous computation. The length of
synchronous computation varies with time, based on the duration of fire spread-
ing and spotting. Figure 4 illustrates this type of application in a NOWs with
four workstations.

Suppose that the probability of message passing among processors is p, the
cost for message passing is c, the cost for process synchronization is s, the process
synchronization interval (also called checkpoint interval) is d, the number of steps
needed for the simulation is N , the total workload of the parallel program isW ,
the number of processors in the NOWs is n, and the processor processing speed
is vp which is the amount of workload the processor can process per unit time,



8 Fusen He and Jie Wu

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�P

0

P
1

P
2

P3
Time begin Time end

Time

Asynchronous computation

Synchronous computation

Fig. 4. Synchronous and asynchronous computations of an application in a
NOWs with four workstations.

then the execution time of parallel program can generally be expressed as,

T = Te + Tc + Ts + Tr = max{
W

n× vp
}+ p×N × c +

N × s

d
+ Tr(p, d, vp, N)

here, Te is the execution time for effective workload, Tc is the execution time for
interprocessor communication, Ts is the execution time for process synchroniza-
tion, and Tr is the execution time for rollback and is a function of p, d, vp, and
N . If the workload is uniformly distributed, then W = Nw. w is the workload
for each simulation step. wn is the workload on each processor per simulation
step. Normally, c and s are much larger than wn . When

w
n is small, it is obvi-

ous that if process synchronization is performed at every simulation step, that
is d = 1, the interprocessor communication overhead will be large. The longer
the checkpoint interval, the less the simulation time. However, if a fire spreads
to adjacent subdomains simulated by other processors during the interval, the
simulation time will increase. This is because the rollback process will force the
system to return to an early state that has already been simulated. Therefore,
more simulation time is needed. If we reduce the process synchronization inter-
val, synchronization time will be wasted if there is no fire spreading and spotting
to other subdomains at each checkpoint interval. The purpose of this paper is
to study how to choose the checkpoint interval to gain a maximum possible
speedup.
In the parallel ELFM, in order to keep consistent data, each processor needs

to know the maximum number of simulation steps for each burning fire in the



A Parallel Implementation of the Everglades Landscape Fire Model 9

entire landscape, not just in the subdomain simulated by the local processor. MPI
collective communication functions such as MPI Allgather and MPI Allreduce
are used to collect the maximum number of simulation steps in the NOWs.
Since the interprocessor communication in the current MPI implementation is
sender/receiver based, the above mentioned collective communication functions
synchronize the processors while collecting information. There is no need to
use MPI Barrier, a synchronization function in MPI, to perform the process
synchronization.
The performance of a parallelized program can be referred to as speedup,

which is the ratio of the computation time for a sequential computation to that
of a parallelized version of the same computation. The ideal speedup of a com-
putation is proportional to the number of processors used in the computation.
Since UNIX is a multiuser/multitask operating system, the execution time

varies between individual runs. However, the CPU time dose not change. We use
the CPU time to measure the performance of the parallel ELFM program. The
speedup of the parallel ELFM program can be expressed as follows,

Speedup =
Average sequential CPU time

Average parallel CPU time

4.2 Application of checkpointing and rollback in parallel ELFM

The previous study [2] of the parallel ELFM code indicated that the syn-
chronous computation is needed only when there are data exchanges between
adjacent processors. This occurs when a fire acrosses the boundary to another
subdomain simulated by a different processor. Checkpointing with rollback is
an ideal choice to improve the performance of the parallel ELFM code. Since
data exchange among processors is performed at the same simulation time step,
synchronous checkpointing will be the best choice. In our simulation, the syn-
chronous checkpointing interval is measured by days.
The interprocessor communication in the current version of MPI is a two-

sided communication. It is invoked at both sender and receiver sides. Regular
send-receive communication requires matching operations by sender and receiver.
This message-passing communication achieves two goals: communication of data
from sender to receiver and synchronization of sender with receiver. However, in
the parallel ELFM code, when a fire spreads across the boundary of a subdomain,
only the processor holds that subdomain has the information needs to be sent.
This means that data to be transferred to other processors are available only
on one side. The receiving processors do not know in advance when the relevant
information will be sent to them. Regular send-receive commands cannot be
placed in respective sending processors and receiving processors. It would be
better if we can transfer data to receiving processors asynchronously. That is,
sending data whenever it is ready at sending processors and reading data when
needed at receiving processors. Even the MPI nonblocking operations cannot
meet our requirements. We have to use another way to achieve asynchronous
one-sided interprocessor communication.



10 Fusen He and Jie Wu

Sun Microsystems’ Network File System (NFS) is a convenient choice. NFS
is a remote file access mechanism defined in the UNIX operating system. NFS
allows applications on one system to access files on a remote system as if it is
a local file. In the parallel ELFM code, data need to be sent out can be stored
into files in a hard disk. Processors read these files when needed. By doing so,
unnecessary interprocessor communications can be avoided, and therefore, it
provides an effective means to implement process synchronization.

During the process of simulation, each processor keeps a set of flags that are
referred to as rollback flags. This flag set stores the status information of all the
processors in a NOWs. Each flag set is stored as a data file in the hard disk and
the size of the flag set is equal to the number of processors in the NOWs. These
files are referred to as the rollback files. The number of files is also equal to the
number of processors. The position of a rollback flag for a specific processor in the
file matches the processor id of that processor. Reading and writing operations
on files are performed based on rules described in Figure 5: Each processor reads
the complete rollback flag set from the file assigned to it. However, processor Pi
only updates rollback flags which store the rollback information of this particular
processor. That is, the ith position of all the data files in Figure 5. This kind
of operations can be expressed as “reads in row and writes in column”. The
rollback flag set is checked by a processor on a daily base.

Just before a fire spreads across the boundary to another subdomain sim-
ulated by a different processor, the processor executing the current simulation
sets its rollback flag to true and updates the data files that store the rollback flag
set. This processor also creates a starting time file that stores the time at which
the fire begins to spread across the boundary to other subdomains simulated by
other processors. Then this processor rollbacks to its most recent checkpoint. It
restores the saved state of that processor at the checkpoint and resumes simu-
lation from the checkpoint in the asynchronous mode. However, it switches to
the synchronous mode once it reaches the starting time, i.e., the start of a fire
crossing the boundary.

The operations for those processors which do not initiate the rollback process
are described as follows: Processors read the rollback flags from the rollback flag
files. If they find that some of these flags are set to true, these processors reset
them back to false. They also select the minimum starting time from the corre-
sponding starting time files. These processors then rollback to their most recent
checkpoints, restore their states at the checkpoints, and resume the simulation
in the asynchronous mode. However, these processors will switch to the synchro-
nous mode once their simulation time reaches the minimum starting time they
read from starting time files. All processors will switch back to the asynchronous
mode once the current fire stops. The mechanism that resets rollback flags back
to false avoids the infinite loop that may occur in the parallel ELFM. If the flag
is not set to false, after the synchronous computation, the processors read the
rollback flag set again and get an incorrect conclusion that message exchange
is needed. In order to keep the stored data up-to-date, the fsync function in



A Parallel Implementation of the Everglades Landscape Fire Model 11

P

P

P P P P

P

P

0 1 2 3

0

1

2

3

pr
oc

es
so

r 
w

ri
te

processor read

file

file

file

file

Fig. 5. File operations on rollback information in a 4-workstation NOWs.

UNIX should be called each time when data writing is performed. fsync forces
the UNIX operating system to flush data in memory buffer to a hard disk.
In the proposed approach, the most recent checkpoint of each processor is

stored in the main memory of each processor. The size of the data is 3× 1755×
1634/n, where n is the number of processors in the NOWs.

5 Results and Discussion

The parallel ELFM using the proposed approach is implemented using
MPICH, which is an MPI implementation provided by Argonne National Labo-
ratory. The computing environment is a set of Sun Sparc V workstations running
Solaris. These workstations are interconnected by a 10 Mbits Ethernet.
We use speedup to measure the performance of the parallel ELFM using MPI.

In order to show the improvements achieved by the proposed approach, we first
look at the speedup of the parallel ELFM using Express [3]. The performance
analysis in [3] indicated that the four-processor-version of the parallel ELFM was
slower than the one processor code by a factor of about four; the four-processor-
version took roughly 10 minutes to simulate one day, and the one processor
version clocked in at about 2.6 minutes. There is a light variation in these values
between individual runs of these models, however, due to network traffic and
other factors. The true serial version of the code runs at a rate of roughly 11
years simulation in 90 minutes, or 0.02 minutes per day. Thus, the performance
of the parallel ELFM code using Express is unacceptable.
In an early study [2], the parallelized ELFM code using MPI has been run on a

NOWs with four workstations. Figure 6 shows the speedup of the parallel ELFM
using MPI without using the checkpointing technique. This version of the parallel
ELFM code uses a pessimistic approach. That is, processor synchronization is
conducted at every simulation time step. The sequential version of the ELFM



12 Fusen He and Jie Wu

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12

Sp
ee

du
p

Number of years simulated

Fig. 6. Speedup of the parallel ELFM using MPI by a pessimistic approach.

code also runs on each individual workstation in the NOWs. Compared to the
results using Express, the performance of the parallel ELFM code is improved;
however, it is still unsatisfactory.

Since workstations are usually used as a multitask and multi-user system, the
workload varies from processor to processor and the execution time also varies
with different workloads. In order to analyze the performance of the parallel
ELFM, we focus on CPU time, rather than elapsed time. A process’s CPU time
is composed of two parts. One is known as user time, and the other is system
time. User time is the CPU time used while executing instructions in the user
space of the calling process, and system time is the CPU time used by the system
on behalf of the calling process. Most of computational costs are reflected in
the user time, almost the entire system time and part of user time are related
to interprocessor communication. The processor idle time is the actual elapsed
execution time less the user time and the system time. The idle time on each
processor is much larger than the user time and the system time.

In order to study the influence of the proposed algorithm on the perfor-
mance of the parallel ELFM, we first performed a simulation of the parallel
ELFM using checkpointing, but without rollback. In this model, processors only
synchronize at certain given checkpoints. The parallel ELFM with only check-
pointing synchronizes processors at each checkpoint. This is the ideal case of our
checkpointing and rollback algorithm. However, if a fire spreads to the adjacent
subdomains simulated by other processors in the NOWs, the result will be in-
accurate. The numerical accuracy can be enhanced by reducing the checkpoint
interval, but it can never reach the level as the one with a rollback process.



A Parallel Implementation of the Everglades Landscape Fire Model 13

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

Pa
ra

lle
l E

xe
cu

tio
n 

tim
e 

(s
ec

)

Synchronization frequency in days

With both checkpoint and rollback
Only has checkpoints

Fig. 7. Program execution time of the parallel ELFM vs. synchronization fre-
quency in a 4-workstation NOWs.

The application of checkpointing and rollback techniques in the parallel
ELFM significantly reduces the interprocessor communication overhead of the
parallel ELFM program. Compared with the execution time of the parallel ELFM
without using checkpointing mechanism, the system time is greatly reduced.
Figure 7 compares the execution time of the parallel ELFM program with only
checkpointing to that with checkpointing and rollback.
Figure 8 shows the comparison in terms of speedup. A superlinear speedup

is obtained for execution only with process synchronization. Compared with the
serial ELFM code, the parallel ELFM code uses only a quarter of the mem-
ory that the serial version uses. This might be the reason for this superlinear
speedup. We can see that the execution time with checkpointing and rollback
takes a little longer than the one with only process synchronization. This is be-
cause the rollback process takes some extra time. Since the probability of fire
spreading and spotting between subdomains is small, the probability of a roll-
back process invoked is also small. When there is no fire spreading and spotting
during the process of simulation, the parallel ELFM with checkpointing and
rollback reduces to the parallel ELFM with only process synchronization. When
the process synchronization interval varies from 20 to 120 days, the speedup of
the parallel ELFM program fluctuates in the range of 2.6 to 3.7. The average
speedup is above 3. The performance of the parallel ELFM code is significantly
enhanced using the checkpointing and rollback techniques. Figure 9 shows the
landscape pattern after a 1-year simulation period. The grey area in the land-
scape indicates that fires have occurred in that area.



14 Fusen He and Jie Wu

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120

Sp
ee

du
p

Synchronization frequency in days

With both checkpoint and rollback
Only has checkpoints

Fig. 8. Speedup of the parallel ELFM vs. synchronization frequency in a 4-
workstation NOWs.

Fig. 9. Landscape pattern of WC2A in the Everglades after a 1-year period
simulation by the parallel ELFM code.



A Parallel Implementation of the Everglades Landscape Fire Model 15

6 Conclusion

In this paper, we have reported a study of parallelization of Everglades Land-
scape Fire Model (ELFM) using Message Passing Interface (MPI). The ELFM
code has been successfully ported to MPI. We have studied the checkpointing
and rollback techniques and have applied the synchronous checkpointing mech-
anism combined with the rollback technique to parallelize the ELFM code using
MPI. The simulation results show that a better speedup has been obtained com-
pared to the parallel ELFM code without using the checkpointing and rollback
techniques. The present study indicates that for certain type of parallel appli-
cations such as the ELFM, if the probability of interprocessor communication is
small, checkpointing and rollback techniques can enhance their performance.
Our future work will focus on generalization of the parallel computation

model with the mixture of a variety of asynchronous and synchronous computa-
tions. Parameters that affect the performance of the parallel applications, such
as synchronization cost, asynchronous and synchronous computation ratio, load
balancing, etc., will be studied both theoretically through numerical analysis
and empirically through simulation.

References

1. D. K. Panda, and L. M. Ni. Special Issue on Workstation Clusters and Network-
Based Computing. Journal of Parallel and Distributed Computing, 40:1 – 3, 1997.
1, 2

2. F. He, J. Wu, C. Fitz, F. Sklar, and Y. Wu. A Parallel Implementation of the
Everglades Landscape Fire Model Using Message Passing Interface. Report to South
Florida Water Management Disctrict, Florida Atlantic University, March 1998. 2,
3, 9, 11

3. L. T. Wille, and P. J. Ulintz. Parallel Simulations of Fire in the Everglades –
Performance Analysis of Alogirthm. Report to South Florida Water Management
District, Florida Atlantic University, December 1996. 2, 2, 11, 11

4. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
version 1.1. Available via anonymous ftp from ftp.mcs.anl.gov, June 1995. 2

5. P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1994. 2

6. J. Wu. Distributed System Design. CRC Press, Boca Raton, FL, 1998. 4
7. Y.-M. Wang, Y. Huang, K.-P. Vo, P. Y. Chuang, and C. Kintala. Checkpoint-
ing and Its Applications. In Proceedings of the 25th Int’l Symp. on Fault-Tolerant
Computing, pages 22–30, 1995. 4

8. Y. Wu, F. H. Sklar, K. Gopu, and K. Rutchey. Fire Simulations in the Everglades
Landscape Using Parallel Programming. Ecological Modelling, 93:113–124, 1996. 2


	Introduction
	Everglades Landscape Fire Model (ELFM)
	Checkpointing and Rollback
	The Proposed Approach
	Mathematical model
	Application of checkpointing and rollback in parallel ELFM

	Results and Discussion
	Conclusion



